4. Creating and using squashed file systems
4.1. Basic steps
In order to create a squashed file system out of a single directory (say, /some/dir), and output it to a regular file (thus, producing a file system image), you need to say only one magic phrase:
bash# mksquashfs /some/dir dir.sqsh |
mksquashfs will perform the squashing and print the resulting number of inodes and size of data written, as well as the average compression ratio. Now you have your /some/dir directory image in the dir.sqsh file. You can now use the mount command to mount it using a loopback device:
bash# mkdir /mnt/dir bash# mount dir.sqsh /mnt/dir -t squashfs -o loop |
To check if you have what's expected:
bash# ls /mnt/dir |
If you want to output the file system directly into a device (say, your floppy at /dev/fd0):
bash# mksquashfs /some/dir /dev/fd0 |
Then just mount the device:
bash# mount /dev/fd0 /mnt/floppy -t squashfs |
And check if it's okay:
bash# ls /mnt/floppy |
4.2. Squashing file systems
Operations described here correspond to most cases where a read-only compressed file system can be used, whether you want it to be on a block device or in a file. This could be anything from large FTP/HTTP-served archives that don't change often, to having a squashed /usr partition and anything alike with these.
4.2.1. Example 1
Let's suppose you have a /var/arch directory with lots of files and that you want to turn it into a squashed file system and keep it on your root partition as a file (it will be a file system image that you will mount via a loopback device). The operations needed to perform are as follows.
Squash the directory, then mount it via loopback to test it:
bash# mksquashfs /var/arch /var/arch.sqsh bash# mkdir /mnt/tmp bash# mount /var/arch.sqsh /mnt/tmp -t squashfs -o loop bash# ls /mnt/tmp |
If everything is as expected, make this file system mount automatically at boot time by adding this line to your /etc/fstab:
/var/arch.sqsh /var/arch squashfs ro,defaults 0 0 |
Unmount the file system from the temporary mount point, and mount using it's fstab entry:
bash# umount /mnt/tmp bash# mount /var/arch |
Now just ensure that everything works fine:
bash# ls /var/arch |
4.2.2. Example 2
Say you have two hard disk partitions, /dev/hda6 (which is empty) and /dev/hda7 (which is bigger than /dev/hda6, mounted at /var/arch, contains some data and is full). Now, say you want to squash the /dev/hda7 file system and move it to /dev/hda6, then use /dev/hda7 for some other purposes. We will suppose you have the following line in /etc/fstab (reiserfs is just an example file system used on /dev/hda7):
/dev/hda7 /var/arch reiserfs defaults 0 0 |
In the same fashion as with the previous example:
bash# mksquashfs /var/arch /var/arch.sqsh bash# mkdir /mnt/tmp bash# mount /var/arch.sqsh /mnt/tmp -t squashfs -o loop bash# ls /mnt/tmp |
If everything went fine, unmount /dev/hda7 (if needed) and use dd to copy /var/arch.sqsh to /dev/hda6:
bash# umount /dev/hda7 bash# dd if=/var/arch.sqsh of=/dev/hda6 |
Now change the line in /etc/fstab for /dev/hda7 to:
/dev/hda6 /var/arch squashfs ro,defaults 0 0 |
Mount the new file system and check to see if all went fine:
bash# mount /var/arch bash# ls /var/arch |
Don't forget to erase the unneeded file system image:
bash# rm /var/arch.sqsh |
4.3. Creating tiny/embedded systems
By saying "tiny/embedded", I mean Linux systems that are being built for booting from floppy disks, IDE/USB flash disks, iso9660 CD-ROMs, small-sized hard drives and the like. Whether you want to have your whole root file system on a single media (a single partition, a single floppy), or have a modular system (several floppies or disk partitions), the procedure is almost identical. Creating such Linux systems themselves is out of scope of this HOWTO - there are dedicated HOWTOs and guides for this (like the Bootdisk HOWTO and Linux From Scratch - visit www.tldp.org to retrieve these documents).
4.3.1. Squashed file systems on floppy/flash/hard disks
In order to use SquashFS for creating Linux systems on small disks, you just have to follow the usual steps for creating a minimal system, performing the following operations at respective points:
When developing a kernel for your system, make sure you enable SquashFS support so it can mount squashed file systems
Use mksquashfs for creating read-only initial ram disks and/or root and/or other file systems
Don't forget to set file system types to squashfs in /etc/fstab and/or the startup scripts of your system for mounting squashed file systems
Floppy example. Let's say you have your floppy system tree at /home/user/floppylinux and you want to place the root file system on one floppy and /usr on another. What you should do is:
bash# cd /home/user bash# mksquashfs floppylinux root.sqsh -e usr bash# mksquashfs floppylinux/usr usr.sqsh |
Note 1: you can see here how we use the -e option to exclude the /usr directory for root file system's image.
Note 2: don't forget to specify squashfs in your root disk's /etc/fstab or startup scripts when mounting the /usr file system.
Insert a root disk in your 3.5" floppy drive (I assume you have a lilo or grub on it, and, thus, a file system exists on this floppy, and the root file system will reside under the /boot directory of this file system):
bash# mount /mnt/floppy bash# cp root.sqsh /mnt/floppy/boot |
When done, unmount the root floppy, change the floppy to a /usr disk and use dd to transfer the usr file system:
bash# dd if=usr.sqsh of=/dev/fd0 |
4.3.2. Squashed file systems on CD-ROMs
With SquashFS, you can compress large file systems that will be used in live CDs (just as an example). For this purpose SquashFS is also used with UnionFS.
Enable SquashFS in the linux kernel of the target system
Create a squashed root file system
Modify the /etc/fstab or startup scripts of the target system to mount the squashd file system when you need it
If you create a root file system out of a running Linux system, use the -e option for mksquashfs to exclude all pseudo-filesystems such as /proc, /sys (on linux kernels after 2.5.x) and /dev (when using DevFS). Also, don't forget to add the file system image itself that is being created with mksquashfs (I think you know the reasons for these exclusions).
4.4. Making it writeble
As mentioned, another interesting use for SquashFS is with Unionfs filesystem, which provides copy-on-write semantics for the read-only file systems, enahancing the possibilities. (For unionfs you can look at http://www.filesystems.org/project-unionfs.html)
Just to make an example, you may want to make your /home/user squashed, to compress and backup your files without losing the possibility to apply changes or writing new files.
Create the ro.fs squashed file system and the rw.fs dir.
bash# mksquashfs /home/user1 ro.fs bash# mkdir /home/rw.fs |
Mount the squashed ro.fs file system using the loopback device
bash# mount -t squashfs ro.fs /mnt -o loop |
mount the unionfs file system, that makes /mnt and /home/rw.fs apparently merged under /home/user1 location.
bash# cd /home bash# mount -t unionfs -o dirs=rw.fs=rw:/mnt=ro unionfs user1 |
As you can see, now you can create new files in /home/user1.
bash# cd /home/user1 bash# touch file1 bash# ls |
umount the unionfs and the squashfs file systems and list the content of /home/user1 and /home/rw.fs dir
bash# cd .. bash# umount /home/user1 bash# umount /mnt bash# ls /home/user1 bash# ls /home/rw.fs |
You can see that the new file1 was created in /home/rw.fs
When you want to add the new created files to the stable and compressed squashed file system, you have to add them to the exsisting one.
bash# mksquashfs /home/rw.fs /home/ro.fs |
Now, to mount your squashed user home directory at system startup, you can do as follow:
Make squashfs and unionfs modules loaded at boot time.
bash# echo squashfs >> /etc/modules bash# echo unionfs >> /etc/modules |
Change the owner of the writeble branch to match user1.
chown user1 /home/rw.fs |
Add these lines to /etc/fstab file to mount squashfs and unionfs at boot time.
... /home/ro.fs /mnt squashfs loop 0 0 unionfs /home/user1 unionfs dirs=/home/rw.fs=rw:/mnt=ro 0 0 |